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The gross energetics and sizes of the stable nuclei are accurately reproduced by a simple model of nuclear 
structure using Thomas-Fermi approximation. Saturation is obtained by taking the (spatially Yukawa) 
two-body interaction to be (quadratically) momentum-dependent. Coulomb effects and neutron-proton 
mass difference are included. The two coupled nonlinear integral equations for neutron and proton spatial 
distributions are integrated. The system of equations is made unique by the choice of only four input 
parameters, and these parameters are optimized by requiring a best fit of the solution to the binding-energy-
per-nucleon and neutron-proton-ratio curves as a function of A. The optimum parameter values are reason
able. The Yukawa force range is found to be about 40% of fi/im^c). A small but definite excess of neutron 
radius over proton radius is found, and also a slight depression of the central proton density for the heavier 
nuclei. Satisfactory agreement with measured radii and surface thicknesses is obtained. 

INTRODUCTION 

EARLIER work,1 hereafter referred to as I, investi
gated a degenerate-fermion-gas nuclear model in 

"classical" (Thomas-Fermi) approximation.2 Two-body 
forces were assumed, with a Yukawa dependence on 
relative position and, to produce saturation, a quad
ratic3 dependence on relative momentum. In I it was 
found that the integral equation for the spatial distri
bution of nucleons could be solved; and that a saturated 
inner region of the nucleus and a surface region of the 
correct sizes are predicted for reasonable values of the 
input parameters. We here report on an extension, 
involving interpenetrating neutron and proton distri
butions, to take into account Coulomb effects and 
produce a realistic nuclear model. 

We regard the neutrons (protons) in the ground 
state of a nucleus as a degenerate gas. At each point 
of configuration space, neutron (proton) momentum 
space is assumed to be filled as densely as allowed by the 
Pauli principle: two neutrons (protons) per momentum 
state, up to the Fermi momentum for the neutrons, 
pFn (protons, pFp)> We consider only spherical nuclei, 
in which case the Fermi momenta depend only on the 
distance r ( = | r | ) from the center of the nucleus: 
pFn~pFn(r) and pFP=pFp(r). The total nucleon spatial 
density will be the sum of the neutron and proton 
densities, 

n(r) = nn(r)+np(r), (la) 

1 R. G. Seyler and C. H. Blanchard, Phys. Rev. 124, 227 (1961). 
2 Application of "the" Thomas-Fermi method to nuclear 

structure has been varied and largely confined to studies of the 
nuclear surface. Work closely related to the present work is 
reported by Y. Hara [Progr. Theoret. Phys. (Kyoto) 24, 1179 
(I960)] whose paper refers to most of the previous nuclear-
structure work in Thomas-Fermi approximation. 

3 J. S. Bell, in Lecture Notes on the Many Body Problem, edited 
by C. Fronsdal (W. A. Benjamin, Inc., New York, 1962) has 
shown that it is possible to eliminate the hard-core part of a 
two-body interaction in favor of a quadratically momentum-
dependent interaction (plus many-body corrections, which we 
do not consider here), 

where 
nn(r) = 2(2*H)-*(4W3)ZpFn (r)?, (lb) 

and 
np(r) = 2(2Trhy*(W3)lpFP(r)J. (lc) 

Since we assume that the two-body interaction is 
momentum-dependent, our model will give a mo
mentum-dependent nucleon-nucleus potential energy 
function4 (momentum-dependent optical-model po
tential5). We introduce an average (over the spin states 
occurring) nuclear interaction, which, in spite of the 
presumed charge independence of nuclear forces, can 
be expected to be of different strength for the unlike 
(np) and like (nn and pp) interactions. 

To calculate the potential energy of a neutron with 
momentum p at the position r, one must first add the 
energy contributions of the neutrons' interaction with 
all those neutrons having momenta within the Fermi 
neutron sphere (FNS) at r', and the contributions of 
the neutrons' interaction with all those protons having 
momenta within the Fermi proton sphere (FPS) at 
r', and second add the contributions from different r' 
throughout the nuclear volume (NV): 

U%(t,v)=-Uof * ( |—I) 
{lifiif 

x\[ W | — I ) 

+kf # ' G ( I — h w , (2) 
J FPS V pD l/J 

where U0 is a fixed positive energy giving the strength of 
the like-nucleon interaction and k is the ratio of the 
unlike to like interaction. Thus, kU0 is the strength of 

4 V. F. Weisskopf, Nucl. Phys, 3, 42.3 (1957), 
5 F, Perey and B, Buck, Nucl, Phys, 32, 353 (1962), 
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the np interaction. The function G expresses the 
momentum dependence of the interaction, the function 
F the spatial dependence, and YD and pD are, respec
tively, length and momentum parameters introduced 
to make the arguments of F and G dimensionless. 

The potential energy of a proton with momentum 
p at position r is 

We have 

2 

(2TT^)3 
Up(ryV)=-Uo[ *'/{ — )—-

J N V \\ rD l/(27r; 

x\kf dpvfV—^l) 
I ^FNS M pD ' / 

+ f <W] — I ) 
J FPS \ I pD 1/ 

+ dt' dp', (3) 

where the last term is the Coulomb potential energy 
(e—proton charge), and rz> and pn are the ranges of the 
interaction in configuration and momentum space. 

We adopt, as in I, for F, the Yukawa function, 

F(x) = e~x/x, 

and for G, the quadratic, 

G(x) = 1—x2. 

(4) 

(5) 

The choice of a quadratic for G leads to a spatially 
dependent effective-mass approximation. Levinger and 
his co-workers6 have employed a quadratically mo
mentum-dependent potential to describe the two-
nucleon singlet-even scattering data and have concluded 
that the resultant description is as accurate as any 
based on a "hard-core" potential model. The equations 
we derive should, in the limit of infinite nuclear volume 
and with the neglect of the Coulomb repulsion and np 
mass difference, describe "nuclear matter" and will, in 
fact, reduce to the constant effective-mass approxi
mation which has been examined by Weisskopf4 and 
Mittelstaedt.7 

BASIC EQUATIONS 

We seek the distribution in space of the nucleons in 
the ground state of a spherical nucleus. Our approach 
is to look for a distribution which will minimize the 
total energy, ET, of a nucleus, subject to the condition 
that the total number of nucleons, A = N+Z, be fixed. 

6 M. Razavy, G. Field, and J. S. Levinger, Phys. Rev. 125, 269 
(1962); O. Rojo and L. M. Simmons, ibid. 125, 273 (1962). 

7 P. Mittelstaedt, Nucl. Phys. 8, 171 (1958). 

and 

r=f drf 

J NV J I 

J NV J Fi 

dp , 
FNS (2irhy 

dp-
F P S (2irfi)3 

ET= ( dt -\ f dpi—+Wn(r,p)\ 
7NV (27rft)3UFNS (2M» J 

(6) 

(7) 

+ [ dpi 
J FPS I 2MV 

-Wp(r,p) 

+NMnc
2+ZMpc

2, (8) 

where Un and Up are given by Eqs. (2) and (3). If the 
neutron-proton mass difference were neglected, as was 
done in I, the rest energy contribution to the total 
energy would be a constant, for a given number of 
nucleons, A, and, therefore, could be omitted from 
Eq. (8) since its variation would be zero. 

Let 

p=Mn/Mp= 1.00138. 
(9a) 

Introduce the dimensionless quantities 

x^r/rD, 

Xo=R/rD, 

where R is the radius of the nucleon distribution,8 and 

<p(x)=pFn(r)/pD9 

^{x) = pFp{r)/pD. 

(9b) 

(10a) 

Let 
2 U0 /rDpD\* 

CN^ ( ) , 
3TT (pD*/2M)\ fi J 

Cc-= 
e2/rD /rDpD 

3TT (pD
2/2M)\ h ) '• 

(10b) 

where the subscripts N and C refer to "nuclear" and 
"Coulomb," respectively. 

Carrying out the integrations in Eqs. (6), (7), and 
(8) as far as possible for arbitrary p and \p we find for 
N, Z, and ET as functionals of <p(x) and \f/(x) 

N= 

Z = 

4 /rDpD\ 

3TT\ * 

4 /rDpD 

3T\ fi 

) / . C * 

If. 
(x)2sx2dx, 

[}f/(x)22%2dx7 

( i i ) 

(12) 

8 We argue later that the nucleon density actually achieves 
the value zero at a finite value of x, which we call xo and identify 
as the nuclear radius, 
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E r = — [ 1 { - / [^(x)+Mh{x)~]xHx— / xdx\ CN / ydy(e~l*-rt-(r<°+ri) 
3TT\ * / L2Ml57o 2Jo L Jo 

-b^(y)L^Kx)+^(x)J}+iC^(x) [ ydy4,*(y)(x+y-\x--y\)-}] 

cp"(x)x2dx+fi-1 ^(x)x2dx)\. (13) 

To minimize £ r while holding 4 ( = i V + Z ) constant, Similarly, variation of ^ in (14) leads after cancelling 
we introduce a Lagrangian multiplier X and require a common factor x2^2 (x), to 

SZET{<p(x)^(x)} CN r°* 
-\mH^(x)}+ZMxU(x)m = 0. (14) M2(x)==—Jo yMe-^-e-^) 

This requirement yields, for a variation of <p, X f ^ W r i - ^ H ^ - f W ] 

^ ( 4 ^ W - X " ^ W W [ i - f ^ ) - ^ ) ] } 
I (pD

2/2M) Cc fXQ 

/ ^ ( , - l - , l - , - ( ^ ) ) 2 ^ o x - / 3 - W ^ 

* J o + , (17) 
X { ^ ( y ) [ l - f ^ 6 0 - ^ ( * ) ] ^ 2 / 2 M 

_ ^3(y)p i — 3.^2^\_ ^2(x)l | 1 = 0 which with the aid of Eq. (3) can be solved for X to give 

X^ppFp^M+U^r^+I^M^. (18) 
which, after cancelling the common factor x2<p2(x) gives 0 . ,,•-//,. ^ j. N - I ^ ^ . I 
, u r . , i ,. r , . I / Since Mm is the proton mass, X is also the total 
the nonlinear integral equation linking <p and \b: <• , i • 1 i ^ . / \ 

° energy of a proton having momentum equal to pFp(r). 
CN rxo Thus, comparing (16) and (18), we have the result that 

<P W = / ydy{e y — e y ) ^e t o t aj[ energy of the most energetic neutron is exactly 
0 equal to the total energy of the most energetic proton. 

X {<p3(3>)[1 — f <p2(y) — <p2(x)~] This result insures stability against beta decay. 
\—Mc2 ^ e introduce the terms Fermi neutron (proton) 

+W(y)[_\-U2(y)- <p2(x)l)-\ —. (15) energy, EFn (EFp), as follows: 
PD2/2M . EFn^\-Mc2=pFn

2/2M+Un(r,pFn), 
To identify the physical significance of the Lagrangian ^ . n inr 9 r>u 9 / o u 1 TT / ^ \ v i y a ; 
u- r \ v I? / i c \ V L , L -A A? /o\ EFp=\—p-1Mc2=fipFp2/2M+Up{r,pFp). 

multiplier X we rewrite Eq. (15) with the aid of Eq. (2), p r p ' PK ,r PJ 

wherein use is made of the definitions (4), (5), (9), and Thus, EFn, for example, is the total energy minus the 
(10) as rest energy of the most energetic neutron or, equiva-

<f(x) = (pDyiM)-i[-- Un(r,pFn)+\-Mc2~], l e n t ly> f r o m (16)> t h e s u m ? f t h e k i n e t i c a n d Potential 
energies of the most energetic neutron. (EFn should not 

which when solved for X, use being made of definition b e c o n f u s e d with the Fermi neutron kinetic energy, 
(10a), gives TF^ w h k h i s t h e t e r m pFn2/2M.) 

\ = pFn
2/2M+Un(r,pFn)+Mc2. (16) We define two additional dimensionless quantities 

Recalling that M is the neutron mass we see that X eFn=EFn/(pD2/2M), 
is the total energy of a neutron having momentum ^ ,,. 9/01>rx (19b) 
u r\ J ^ I \ w • ± - eFp=EFp/(pD

z/2M), 
pFn{r), and that this maximum neutron energy is r 

independent of position. and rewrite Eqs. (15) and (17) as 
CN rx« 
_ / ( , - | . - . l _ , - ( ^ ) ) { ^ ( 3 ; ) [ - 1 _ | ^ ( 3 ; ) ] + ^ 3 ( 3 ; ) r - 1 _ | ^ 2 W ] } ^ 3 ; + € F n 

X Jo 
V2 (x) = , (20) 

CN f
x° 

— / (e-\x-^-e-(x+^)[<pz(y)+kxpz(y)2+l 
x Jo 
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and 

\p2 {%) = 

CN rx° 
___/ ( ^ l ^ l - ^ ( ^ ) ) { ^ ( y ) [ l - | ^ ( y ) ] + * ^ ( y ) [ l - f ^ ( y ) ] } ^ + 6 F p 
x Jo 

CN rx° 
— / (e-\*-y\-e-^+^)[^(y)+kcp*{y)~l+P 
X JQ 

These two coupled equations are our basic working 
equations. Their solutions determine, through the use 
of Eqs. (10) and (1), the nucleon density distribution. 

Physically, x0 is the distance (measured in units of 
TD) beyond which the nucleon density is zero. Thus, 
to be physically reasonable both <p(x) and \p(x) must 
vanish for x>Xo. This, of course, does not preclude 
the possibility of one of these functions having already 
vanished at some value, say, xh less than xo (this will 
turn out to be the case for \f/7 the proton distribution). 
Therefore, we proceed to seek two functions which 
satisfy one of the working equations for x<Xo, and the 
other equation for X<XI(<XQ) and which are taken to 
be identically zero for x>Xo and x>xh respectively. 
For example, <p and ^ may satisfy (20) for x<x0 and (21) 
for X<XI<XQ [where X\ is determined by the solution 
of (21)]. In this event we would complete their defini
tions by taking <p{x) and \p(x) to be identically zero 
for x>x0 and x>xi, respectively. I t is seen that func
tions defined in this manner for all x still satisfy Eq. 
(20) for x<x0 and Eq. (21) for x<x\. But since Eq. 
(20) for x>x0 and Eq. (21) for x>Xi are not satisfied 
by these functions it would appear that we cannot 
conclude that the energy is minimized by these func
tions. However, as pointed out in connection with the 
energy variation procedure, Eqs. (20) and (21) occur 
multiplied by common factors, in particular <p(x) and 
^{x)j respectively. Thus, one of the functions <p, \p 
being zero (instead of the corresponding working equa
tion being satisfied) is also a sufficient condition for an 
energy extremum. 

We now have a procedure valid for all x0 (assuming we 
can solve the coupled equations in the appropriate 
regions of x) for obtaining the desired nucleon density 
distribution and have the assurance that the density 
function, thus calculated, is physically meaningful in 
that it minimizes the energy of the nucleus and exhibits 
reasonable behavior for X>XQ. 

Before attempting to solve the working equations 
for a particular value of x0 we count the number of 
free input parameters in our theory. The spirit of the 
calculation is to treat the dimensionless parameters k, 
CN, and Cc, characterizing the interaction strengths, 
as independent of the size of the nucleus, Xo, but permit 
the Lagrangian multiplier, X (the total energy of the 
most energetic nucleon) to depend on XQ. The depend-

I ypz(y)(x+y—\x—y\)ydy 
Jo 

cc r 
2xj o 

(Same denominator) 

(21) 

ence of X on Xo (or A) implies, through Eq. (19a), that 
the neutron and proton Fermi levels, EFU and EFV, 
(or the dimensionless €j?n and €FP) will depend on A. 
If we define D as the difference between the Fermi levels 
and make use of the difference of Eq. (19a) we see 

D=EFp-EFn=Mc2--p-1Mc2 

= (Mn-Mpy= 1.3 MeV. (22) 

Thus, the difference between the Fermi levels is 
independent of A. Defining the dimensionless difference 

$>=D/(pD*/2M), 

we have using (19b) 
1.3 MeV 

6Fp—€Fn=S) = . (23) 
PD2/2M 

Upon examination of the working equations [(20) 
and (21)] there would appear to be five input 
parameters, k> CN, CC, €FP, and e^n. However, the 
method of solution employed will, for each value of 
#o selected, determine a value for e ^ and, hence, knowl
edge of the constant pr>, in (23), would give the value of 
€FP for that xo. Thus, specification of the four parameters 
k, CN, CC, and pD permits solution of the working 
equations for the functions <p(x) and \f/(x) for arbitrary 
values of nuclear radius x0. 

The question then arises as to whether these four 
parameters [and the solutions <p(x) and \p{x)~} are 
sufficient for determining all derived quantities such 
as the total energy of the nucleus, nuclear radius, etc. 
For example, looking at Eq. (13), we find, in addition 
to the above four parameters, the quantity TD, and 
Eqs. (2) and (3) involve the quantity Uo. Not all 
these quantities are independent. In fact, of the five 
quantities CN, Cc, PD, ?D, and Uo only three are 
independent as can be seen from Eqs. (10b). Thus, we 
have exactly four free input parameters in our theory: k 
and any three of the five quantities CN, CC, ̂ D, PD, and 
Uo, with which to attempt to fit nuclear energies, 
neutron/proton ratios, radii, and surface thicknesses 
over the whole range of nuclei (excluding the lightest, 
which are not expected to be subject to such a purely 
statistical theory). 

Suppose for definiteness we select the input parameter 
set: k, rD, CN, and Cc- The other quantities pn and Uo 
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are then expressible, through the use of Eqs. (10b) as 

pD=(3w¥/SMe2)(Cc/rD
2), 

Uo=(2e*/rD)(CN/Cc).
 {U) 

We could guess values for the four input parameters, 
solve the working equations and compare the values of 
the derived quantities, e.g., total binding energy, with 
the experimental values for the same nucleus, then 
repeat the process with new guesses for the parameters. 
The disadvantage of this direct approach is the lack 
of a priori knowledge concerning the approximate 
values of the free parameters, in particular CN, pD, 
and k. An alternative is to attempt to relate some of our 
free parameters to more familiar quantities. The 
quantities employed in I, in describing infinite nuclear 
matter, are convenient for this purpose. 

To obtain such relations, we examine our working 
equations [(20) and (21)] in the limit of nucleons being 

This equation with (1+&)CV=C is the equation 
studied in I. There the equation was applied to infinite 
nuclear matter, i.e., to nuclei with arbitrarily large radii 
and uniform density. In this limit [_<p being a constant, 
say, (A* (=PFOO/PD), eF=eFao, and x0 —> °°] Eq. (26) 
can be simplified and rearranged to give 

6Foo= <pJ-2(l+k)CN<pJll- ( 8 / 5 ) ^ 2 ] . (27) 

Also, the ratio of the total energy to the total number of 
nucleons is in this same limit, 

€ . = (3/5)<pj- ( 1 + £ ) C W [ 1 - ( 6 / 5 W ] , (28) 

where, in analogy with (19b), we have defined 

e^EJ(pD
2/2M), (29) 

Eoo being the average energy per nucleon in nuclear 
matter. We introduce a length r0oo> the radius of the 
volume per nucleon in infinite nuclear matter. In the 
usual fashion 

Thus far, we have introduced four new quantities, 
€Foo, €oo, or ii/oo, <£>«,, or pFn, and r0oo; and only three new 
equations, (27), (28), and (30) relating them. The 
necessary fourth equation is provided by the Hugen-
holtz-Van Hove theorem,9 which states that 

€OOAFOO=1- (31) 

We accomplish our immediate objective in three 
9 N. Hugenholtz and L. Van Hove, Physica 24, 363 (1958). 

dynamically equivalent. That is, we retain the possi
bility of placing four nucleons in the same momentum 
state but set 

C c = 0 (25a) 

("protons" are now chargeless), and 

0 = 1 (25b) 

(neglect np mass difference). 
From Eq. (22) we see that 0 = 1 implies EFP^EFU SO 
we can write just €F for both €Fn and €FP. For dy
namically equivalent nucleons we expect the neutron 
and "proton" spatial densities to be the same, and upon 
examining Eqs. (20) and (21) we see that in the limit of 
Eq. (25) either equation is just the other equation with 
<p and \p interchanged. Thus, the coupled equations do 
indeed permit the symmetrical solution &(x)= <p(x), 
where <p satisfies the single equation 

steps: First, substituting Eqs. (27) and (28) into (3l) 
results in the equation 

CN=2[S<PM+kKl-2<PJ)J-1; (32) 

second, substituting this result back into Eq. (28) 
where, with the help of Eqs. (29) and (30), we find 

l -0 .103796^0oo 2 

<pj = z , (33) 
(18/5)-0.207592E00r0oo

2 

(where E«> is in MeV); and third, using Eqs. (10) 
and (30), 

3 e2 / 8 \2 '3 2M rD* 
Cc= ( - ) 

2rD\9ir/ fi2 r0oo<Pcc 

= (0.0448394 F-i)rD
2/(r0„<p„). (34) 

From these three equations it is easily seen that CN is 
determined by &, f ooo, and Ew; while Cc is determined by 
?D, fooo, and Eoo. Thus, we have found a new set of four 
parameters, namely, k, rp, r0oo, and E^ which are 
equivalent to the original set, k, ro, CN, and Cc-

The advantage of using the new set of input 
parameters is made clear by the following two obser
vations: (i) row is the coefficient of the "A1,z law" in 
nuclear matter and, although not precisely knowrn, has 
the approximate value 1.2±0.2 F, as suggested by 
Hofstadter's nuclear density experiments,10 (ii) Ew 

corresponds to the coefficient of the volume term in 
the semiempirical mass formula and is given by Green11 

10 R. Hofstadter, Rev. Mod. Phys. 28, 214 (1956). 
11 A. E. S. Green, Phys. Rev. 95, 1001 (1954). 

(l+k)CN f*0 

/ (e-i°-y\-e-^)<pHy)ti-i<pHy)lydy+^ 
Jo X Jo 

**(*) = . (26) 
(l+k)CN r° -k)cN r 

X Jo 
(y-| x-y\ _ gr(*f y)) ^3 (y)ydy+ 1 
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as —15.74 MeV. One is tempted to use this value and 
treat Ew as known, thus reducing the number of free 
parameters to three. However, Ayres et ah12 have 
recently indicated that this value may be uncertain by 
as much as 2 MeV per nucleon. In any event Green's 
value provides us with an initial guess for the parameter 
E„. 

We are now ready for the central problem of this 
work, the solving of the coupled integral equations, (20) 
and (21), for finite values of Xo and x<Xo. 

Employing an iteration method of solution we 
rewrite the working equations, (20) and (21), for a 
particular value of x0, as 

[<p^(x)J 

and 

[>(m)(*)]2 = 

fw(x)+kgW(x)+eFnW(xQ) 
(35) 

kf(»(x) + gW(x)-h(tK%)+eFn(t)(Xo)+£> 

kv^(x)+w^(x)+p 

where 
(36) 

C, T 
Jo 

(e-\*-y\-e-(x+y))[<p(t)(y)J 

t / « ) (x> a 
X 

Co 

o Jo 

X{l-$W>(ymydy, 

-(*fy))[^(0(y)]3 

x{i-i[?P{t)(y)J}ydy, 

h^(x)^—/ (x+y— \%—y\)[}l'(t)(y)lzydy, 
2XJQ 

CN 
v^(x) = 

and 

(e -\x—y\_ -(x+y) )Z<P(t)(y)Jydy, 

cN r*Q 

w ( 0 ( x ) = — / ((r\^v\-(T<a+ri)Z}l'<t)(y)Jydy. 
x Jo 

The hope is that with increasing t (successive iterations) 
(p(t)(x), \/>>(t)(x), and eFn(t)(xo) approach definite limits, 
which are to be taken as the desired solutions <p(x), 
\f/(x), and €Fn(xo)y respectively.13 The definition of the 
iteration procedure is completed by specifying the 
initial guesses, <p(0)(#) and ^ ( 0 )(#) (for x<x0), and by 
requiring the larger of <p{l)(x) and ^l){x) to become 
zero at x=x0, thus determining €Fn

(0)(#o). The smaller 
of <p(1)(x) and i^(1)(#) will then become zero for some 
value of x, say, Xi, (< x0) and will be taken as identically 
zero for all x between x\ and Xo. Having obtained <p(1) 

and \[/a) in this manner, we repeat the procedure to 
find <p(2)(x), 4/(2)(x), and €FW(1)(^O)- This procedure is 
iterated until two successive iterants are within a pre-
specified tolerance (we used 0.02%) of each other for 
all X<XQ. 

12 R. Ayres, W. F. Hornyak, L. Chan, and H. Fann, Nucl. Phys. 
29, 212 (1962). 

13 A typical calculation requires 15 to 20 iterations. 

We select the constant <pw [given by Eq. (33)^ as 
our first guess. Thus, for x<Xo, 

?<°>(a0=*(o)(*)=*>oo. (37) 

RESULTS AND DISCUSSION 

Before reporting the numerical results14 we submit an 
outline of the procedure followed for the purpose of 
"optimizing" the input parameters, k, rD, r ^ , and E^. 
The routine employed was: (i) Choose arbitrary trial 
values for the input parametejs (we started with k=l, 
rD=lAF, fo»=1.2F, and £ ^ = - 1 5 MeV/nucleon). 
(ii) Use Eqs. (23) and (24) to calculate £> and Eqs. 
(32)-(34) to calculate CN and Cc- (iii) Substitute k, 2), 
CN, and Cc into the iteration Eqs. (35) and (36). (iv) 
Select a value of Xo (a particular nucleus) and with the 
aid of a digital computer solve these equations for the 
functions <p(x), \p(x), and the constant €Fn(#o). (v) 
Compute the binding energy per nucleon for the nucleus 
by substituting (another computer operation) the 
solutions <p(x), yfr(x) into Eqs. (11)—(13) and calculating 
the negative of the ratio of Eq. (13), ETy to the sum of 
Eqs. (11) and (12) (total number of nucleons in the 
nucleus considered), (vi) Find the ratio of neutrons to 
protons by dividing Eq. (6) by Eq. (7). (vii) Repeat 
steps (iv)-(vi) for various values of Xo, thus obtaining 
theoretical curves for the variation of binding energy 
per nucleon and the neutron-proton ratio as a function 
of the nucleon number, which can be compared to 
available experimental curves, (viii) Repeat steps 
(i)-(vii) with a different choice of parameter values15; 
and continue this procedure in search of input parameter 
values which "best fit" the experimental data in the 
sense of a least-squares computation.16 

The search produced the following best input 
parameter values 

rD = 0.56F, 

r o ^ l ^ O F , 

4=1.35, 

^ 0 0 = - 1 5 . 6 M e V . 

(38) 

The effective Yukawa force-range r& is less than half 
(40%) of the value (fi/m^c) expected on the basis of a 
purely single-pion exchange picture of the nucleon-
nucleon force. I t suggests that multiple-pion exchanges 
may be important, and is consistent with the fact that 
hyperons, which cannot interact with nucleons by 
single-pion exchange, nevertheless seem to be bound 
in hypernuclei to nearly the same extent as a nucleon 
would be bound. The radius of the volume per nucleon 
in nuclear matter, r0oo? is quite of the expected size. The 

14 In the following, for brevity, the predictions of the present 
model will be referred to as the "theoretical predictions." 

15 The method of choosing different parameter values consisted 
of employing a simple variation of the "grid search" technique. 

16 The sum of the squares of the differences between theoretical 
and experimental values divided by the number of compared 
values. 
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unlike-nucleon effective force is about f as effective 
(k= 1.35) as the unlike one, but we know of no rationale 
for a ratio near f. 

The asymptotic energy-per-nucleon (Eo0=-~-15.6 
MeV) is close (within 1%) to the Green11 value, and 
suggests that the fears expressed12 about this number 
may be somewhat alarmist. Our value of E^ is uncertain 
by about 1 % because the best fit to the experimental 
data is not very sensitive to E^. The uncertainty in EM 

causes the other parameter values also to be uncertain, 
as can be seen from the following list of the values of 
the parameters for three different good fits: 

-Soo k YD fOoo 

- 1 5 . 8 1.335 0.553 1.174 
- 1 5 . 6 1.348 0.564 1.202 (39) 
- 1 5 . 4 1.355 0.572 1.229. 

The best fit corresponds to the middle set of values, as 
given before, but the fits obtained with the other two 
sets of values are nearly as good. That is, the mean 
square deviation, based on the deviations from the data 
(binding energy and neutron/proton ratio) computed 
at five or six points (spaced between A equal roughly 
40 and 200), was slightly lower for the middle set of 
values. When only a few points of comparison are 
employed (as was done) to determine the mean-square 
deviation the resultant value will be somewhat 
dependent on the particular comparison points chosen. 
Thus, a more accurate determination of the optimum 
values of the parameters would necessitate the use of a 
larger number ( — 20) of comparison points.17 

Using the values of the four parameters, Eq. (38), 
we find 

<poo = 0.6351, 

CN= 1.388, 

Cc=0.01866, 

TFoo=pFJ/2M= 33.33 MeV, ( 4 0 ) 

pD
2/2M= 82.6 MeV, 

U0= 379.3 MeV. 

Note that the critical momentum pD is substantially 
larger than the Fermi momenta involved (<p and \f/ are 
well below unity) so that "the amount of momentum 
dependence needed in the interaction is not large.'' 
We are probably not in a position to distinguish, for 
instance, between G(q)—l—q2 and exp(—q2), which 
momentum dependence would not change the inter
action from attraction to repulsion for any relative 
momentum. 

As in I we can compare our results in the infinite 
nucleus case to the nuclear matter effective-mass 
approximation of Weisskopf4 and Mittelstaedt,7 wherein 

17 Another serious limitation on the accuracy of the parameters 
is accuracy of the solutions <p, \p of the working equations. To hold 
down the computer time needed, we settled on a one-hundred 
point division of the interval XQ for purposes of numerical 
integration. 

it is assumed that the energy of a nucleon with mo
mentum p can be expressed as 

E(p) = p2/2M+ V,+ (p/pF„)2Vi. (41) 

Evaluating Eq. (2) in the limit of nucleons being 
dynamically equivalent, <p{x)= *pw and x§—> QO? we 
find 

V»= ~2(l+k)CNTFoo<pM~i<pJ)> 

Vt=2(l+k)CNTF^J. ( ° 

Introducing the effective nucleon mass, ikf*, defined 
such that E(p) = p2/2M*+V0j we find for the ratio of 
effective to free mass 

M*/M= ( l + F 1 / r F o o ) - 1 = [ l + 2 ( l + ^ ) C ^ ^ 0 0
3 ] - 1 . (43) 

The values given in Eq. (40), when substituted into 
Eqs. (42) and (43) give 

7 0 = _ 104.6 MeV, 

F i = 55.7 MeV, (44) 

M*/M= 0.375. 

These values differ only slightly (since we found 
TFo0=33.33 compared to their input value of TFoo — 38 
MeV) from the values given by Weisskopf and Mittel
staedt for the case of vanishing rearrangement energy 
(A=0) which is the same as separation energy equal to 
the negative of the Fermi energy (S=—EF). 

A comparison with the optical model is afforded by 
writing Eq. (41), using the values in Eq. (44) as 

E(p) = T-m.6+SS.7T/TPao, (45) 

where T is the kinetic energy p2/2M. Now consider a 
nucleon (neutrons and protons dynamically equivalent 
again) of zero total energy in nuclear matter where it 
sees an optical potential,18 whose real part we call V, 
and has kinetic energy T= — V. We can calculate V 
by setting E=0 in Eq. (45), substituting T V ^ 33.33 
MeV, as given by Eq. (40), and solving for T which 
gives T=39.2 MeV and, therefore, we have19 

V= - 3 9 . 2 MeV, 

which is roughly 7% below the current 42-MeV estimate 
based on low-energy neutron scattering.18 

Table I shows some of the properties of the solutions 
<p(x), \p(%) for various values of x0 (all x values are 
measured in units of rD = 0.564 F).20 Column 2 gives the 

18 A. E. Glassgold, Progress in Nuclear Physics, edited by O. R. 
Frisch (Pergamon Press Inc., New York, 1959), Vol. 7, Chap. 4. 

19 For comparison the first and third sets of parameter values 
given in Eq. (39) would yield optical potentials of 41.0 and 37.6 
MeV, respectively. 

20 In I the range of investigation of x0 was from 4.5 to 10. The 
parameter rn was not determined by the work in I but was 
arbitrarily taken as the Compton wavelength of the ir meson 
(=1.4F) . This assumption implied that the range of x0 corre
sponded to 30<^4 <1100. The smaller value of n> determined by 
this work (0.564 F) forces a rescaling of the distance (T^XTD) and 
indicates that the actual range of A studied in I was only from 
approximately 4 to 76. The absence of saturation for "low" A 
noted in I is now better understood in view of our present knowl
edge as to how "low" A really was. 
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TABLE I. Properties of the solutions <p(x) and \p{x) for various 
values of %o (nuclear radius). All lengths are given in units of m. 

Xo 

16 
15.5 
15 
14.5 
14 
13.5 
13 
12.5 
12 
11.5 
11 
10.75 
10.5 
10.25 
10 
9.75 
9.5 
9.25 
9 
8.5 
8 
7.5 
7 
6.5 
6 
5.5 

A <p(0)/<p„ 

241.43 
219.87 
199.43 
180.10 
161.88 
144.77 
128.77 
113.87 
100.03 
87.26 
75.53 
70.05 
64.83 
59.85 
55.11 
50.61 
46.35 
42.32 
38.52 
31.57 
25.46 
20.16 
15.62 
11.77 
8.57 
5.97 

1.029 
1.030 
1.031 
1.031 
1.032 
1.032 
1.033 
1.033 
1.033 
1.033 
1.033 
1.033 
1.033 
1.033 
1.033 
1.032 
1.032 
1.032 
1.032 
1.030 
1.029 
1.027 
1.023 
1.019 
1.011 
1.000 

H0)/<P« 

0.884 
0.893 
0.902 
0.911 
0.920 
0.928 
0.936 
0.944 
0.952 
0.959 
0.966 
0.969 
0.972 
0.976 
0.979 
0.982 
0.984 
0.987 
0.990 
0.994 
0.998 
1.001 
1.002 
1.002 
0.999 
0.991 

zero diff 

0.96 
0.93 
0.90 
0.87 
0.70 
0.675 
0.650 
0.625 
0.48 
0.46 
0.44 
0.43 
0.315 
0.3075 
0.30 
0.2925 
0.285 
0.2775 
0.18 
0.17 
0.16 
0.075 
0.070 
0.065 
0 
0 

X90-10 

2.72 
2.75 
2.79 
2.83 
2.87 
2.92 
2.96 
3.00 
3.04 
3.09 
3.13 
3.15 
3.17 
3.18 
3.19 
3.20 
3.21 
3.22 
3.23 
3.23 
3.22 
3.20 
3.15 
3.09 
2.99 
2.86 

#1/2 

13.75 
13.29 
12.83 
12.37 
11.91 
11.45 
10.98 
10.52 
10.05 
9.57 
9.10 
8.86 
8.62 
8.36 
8.15 
7.91 
7.67 
7.43 
7.19 
6.70 
6.22 
5.73 
5.25 
4.76 
4.27 
3.78 

Xoe 

13.80 
13.31 
12.83 
12.35 
11.86 
11.39 
10.91 
10.43 
9.95 
9.48 
9.00 
8.77 
8.53 
8.29 
8.06 
7.82 
7.59 
7.35 
7.12 
6.65 
6.18 
5.72 
5.26 
4.80 
4.34 
3.88 

total number of nucleons [Eqs. (11) plus (12)] in the 
nucleus. Column 3 indicates that the neutron density 
("Eqs. (la) and (10a)J near the center of the nucleus is 
saturated, since <p(0) is essentially independent of the 
size of the nucleus, at a value slightly above the neutron 
density of an infinite (with no Coulomb effect and no 
np mass difference) nucleus. Due to the Coulomb re
pulsion, we would expect the addition of protons to a 
nucleus to cause the inner protons to spread out, 
lowering the density. That this is the case is shown by 
column 4 where it is seen that for large A the inner 
proton density becomes significantly less than the 
"proton" ( = neutron) density in infinite nuclear matter. 
Column 5 lists the difference in extent (in units of rD) 
of the neutron and proton density distributions. Since 
we divided the distance x0 into 100 parts for the numeri
cal computation, the point at which the proton density 
vanishes is known only to within a scale division 
(O.Olxo). Thus, the figures in column five are uncertain, 
in particular, each value is only known to lie between 
the value listed, and that value plus 0.01%0. The result 
that the neutron distribution has the greater extent 
was predicted by Johnson and Teller.21 

Column 6 reports the surface thickness,10 the distance 
over which the total nucleon density decreases from 90 
to 10% of its central value. Our results show a surface 
thickness roughly independent of A, averaging to 

" 9 0 % - 1 0 % " = ( 2 . 9 8 ± 0 . 2 6 > D = 1.68±0.15 F. (46) 

This result is of the same order of magnitude, but 
somewhat lower than the lowest values for the skin 

21 M. H. Johnson and E. Teller, Phys. Rev. 93, 357 (1954). 

thickness quoted by Preston.22 Certainly the surface 
region of the nucleus is treated inadequately by the 
present simple model, which in effect neglects quantum-
mechanical diffuseness (and can thus give a sharp edge). 
A tail of nucleon-distribution extending beyond our 
"nuclear radius" is to be expected, and it is, therefore, 
satisfactory that our calculated surface thickness is 
on the low side. I t may be worth mentioning that the 
90-0% surface thickness in the present model is much 
more nearly A -independent (than the 90-10% thick
ness) and averages to the lowest skin thickness 
(2.20±0.03 F) reported by Preston. 

Column 7 gives the value of x at which the total 
nucleon density is equal to half of its central value. 
This value will be referred to as the half-density radius. 
Column 8 gives the extent xQe of the "equivalent 
uniform density model" (density throughout same as 
calculated central density and same number of 
nucleons). 

Our results predict that the radius (as used in this 
paper) of the neutron distribution, XQ, exceeds the 
radius of the proton distribution, the difference in
creasing monotonically as a function of A to the value 
0.54 F at A = 240. Experimental evidence concerning 
the difference in the extents of the neutron and proton 
distributions has been presented by Elton23 and his 
conclusion is that, for heavy nuclei (^4>150), a differ
ence between the neutron and proton half-density 
radii of more than 0.1 to 0.2 F is incompatible with 
experiment. For our solution of largest A ( = 2 4 1 : 
x0= 16), we find by examining the solutions <p and ^ 
that the neutron density drops to half its central value 
at # = 13.85, while the proton density becomes half its 
central value when x— 13.61. Thus, the difference in the 

I 1 1 1 1 1 1 1 1 
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0.8 

0.6 

0.4 
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m 
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FIG. 1. The variation of <p and \p (the Fermi neutron and proton 
momenta in units of pD) as a function of x (the radial distance in 
units of m) for x<xo. Curves are given for x0 (the nuclear radius 
in units of m) equal to 8 and 15, corresponding to A =25 and 200. 
<px is the Fermi momentum (in units of pn) of a nucleon in infinite 
nuclear matter. 

22 M. A. Preston, Physics of the Nucleus (Addison-Wesley 
Publishing Company, Inc.^ Reading, Massachusetts, 1962), p. 46. 

23L. R. B. Elton, Nucl. Phys. 23, 681 (1961). 



" C L A S S I C A L " S E L F - C O N S I S T E N T N U C L E A R M O D E L . I I 363 

FIG. 2. The variation of E, the 
binding energy per nucleon, as a 
function of A. The solid curve repre
sents the theoretical values, the 
isolated points the experimental 
values. 

205 

np half-density radii is 0.24rz> or 0.135 F, which is well 
within Elton's requirement. 

Figure 1 displays the solutions <p(x) (solid curve) and 
\p(x) (dashed curve) as functions of x for two values of 
#o, 8.0 and 15.0, corresponding to 4̂ = 25 and 200 [we 
have normalized the solutions to the infinite nucleus 
value by multiplying by cp^-1 (=1.573)] . For small A 
the solutions <p and \p are nearly equal, but as A increases 
the Coulomb energy rises rapidly (ex Z2) and, thus, the 
proton density distribution (oc^) i 0 0ks considerably 
different (lower in central density and lesser in spatial 
extent) from the neutron distribution (& <pz). I t is to 
be remembered that although, as in Fig. 1, as x~> #0, 
<p —> 0 with infinite slope, the density —» 0 with zero 
slope (cf. Fig. 2 in I) . Some conclusions that follow 
from Fig. 1 (inner neutron density being saturated, 
etc.) have already been drawn from Table I. There is, 
however, one more result to be emphasized. Although 
the neutron density distribution decreases mono-
tonically as a function of x for all A, the proton distri
bution does not. In particular, for A>55 the proton 
density dips slightly in the center; that is, its maximum 
is displaced from the center of the nucleus (compare the 
two dashed curves in Fig. 1). Quantitatively, for 
A = 55 (#0=10), the point of maximum proton Fermi 
momentum (and, therefore, proton density) is displaced 
from the center of the nucleus by 0.10x0 ( = 0.56 F) and 
has a value 0.0001% greater than the central Fermi 
proton momentum. For x0= 15 (A = 200) the maximum 
of the proton Fermi momentum occurs at x= 0.55x0 and 
is noticeably (2.3%) greater than the proton Fermi 
momentum at the center of the nucleus. A dip of 2 .3% 
in proton Fermi momentum corresponds to a dip of 
almost 7% in proton density. As A increases both the 
amount of dip and the amount of departure of the 
proton density maximum from the center of the nucleus 

increase as is to be expected since both effects are 
directly attributable to the increase in Coulomb 
repulsion energy. 

In Fig. 2 is exhibited the variation of the binding 
energy per nucleon, E, as a function of the number of 
nucleons, A. The smooth curve gives the theoretical 
values of E. The_ isolated points indicate the experi
mental values of E for all known stable nuclei having A 
between 5_ and 205 (when more than one experimental 
value of E is available for a particular value of A only 
the average value is shown in Fig. 2). I t is seen that the 
theoretical curve accurately represents the over-all 
"smoothed-out" behavior of the experimental data 
reproducing the average of the experimental values to 
well within 1% for nearly all A in the range 5 to 205. 
The success of our theory in not only satisfying the 
general requirement of exhibiting saturation, but in 
reproducing to high accuracy the observed binding 
energies for all A is, indeed, gratifying. In fact, it 
probably should be admitted that this fit seems 
suspiciously good, in view of the fact that we have made 
no effort to exclude aspherical nuclei from those to 
which the fit is made. 

Figure 3 presents the neutron-proton ratio, N/Z, 
as a function of A. The theoretical values are repre
sented by the smooth curve. The N/Z values of the 
experimentally known stable nuclei are plotted as 
isolated points. Except at very low A, the theoretical 
curve can be accurately represented by the Weizsacker 

expression1 

N/Z= 1+0.015.42/3, (47) 

since for ^4>35 these two curves differ by less than 
0.14%. At lower A, for example, at A = 12, the theo
retical curve is about 1% below the value given by 
Eq. (47), and for A<12 the difference is greater than 
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FIG. 3. The variation of the neutron-
proton ratio, N/Z, as a function of A. 
The solid curve gives the theoretical 
values, the isolated points the experi
mental values (averaged for each A). 

205 

1%. The same information is presented in slightly 
different form in Fig. 4, where N is plotted as a function 
of Z. The smooth curve gives the theoretical values and 
the isolated points the experimental values (Fig. 4 
contains information in the A range 205 to 240 not 
exhibited in Fig. 3). The fit is seen to be very satis
factory over the whole range of A. 

The upper set of data in Fig. 5 shows xQ plotted as a 
function of Allz. We have indicated on the figure an 
attempt to fit the data with a (not necessarily the best) 
straight line, whose equation is #0=2.4&41/3+1.00, or 
multiplied by rD, R= lA0A^+0.56 F. The departures 
from the given line indicate that to fit the points at very 
high A a line having greater slope (the slope in the A1/8 

"law" is usually designated by the symbol r0) is needed 
(e.g., at ,4 = 240, r0=1.48 F), whereas to fit the low A 
portion a much lower value of r0 is needed (e.g., at 
A = 5, r0 would need to be = 1.16 F). Thus, we see that 
a unique value of r$ does not exist. The variation of slope 
(ro), over the range of A considered, can be summarized 
by the statement r0= 1.32 F ± 1 2 % . 

The lower set of data in Fig. 5 presents x0e (the 
extent of the equivalent uniform density model) as a 
function of A11*. As before, to illustrate the departure 
of the data from a straight-line fit we have included the 
line Xoe=2A5A^ or i? e= 1.2L41'3 F. If we require the 
line to pass through the origin (as one would expect 
for a uniform density model) we see that for medium A 
a lower slope is needed (e.g., ,4 = 22 slope =1.185 F), 
while for very large A a larger value of slope is required 
(e.g., A = 240, slope = 1.25 F). 

We conclude that both sets of data in Fig. 5 show 
about the same departure from straight-line fits and 
that the slope (r0) of a straight-line fit to the upper (#0) 
data may exceed, by as much as 15%, the slope of a 
similar fit to the xoe data. These facts indicate the 
necessity for caution when attempting to compare 
directly r0 values based on different models. 

The deviation from the A1/3 law, observed in Fig. 5, 
can be explained by plotting x0 as a function of N1/3, as 
is done in Fig. 6. I t is seen that in this case the data 
can be well represented by a straight-line fit. The 
equation of the line drawn in Fig. 6 is x0= 2.74iVrl/3+1.47 
which when multiplied by rn ( = 0.564 F) becomes 

FIG. 4. Theoretical (solid curve) and experimental 
(isolated points) values of N as a function of Z. £ = 1.54iV1/3+0.83 F. (48) 
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Now if N can be expressed as A multiplied by a 
constant (for nuclear matter N=A/2) we arrive at a 
linear A113 dependence. However, because of the 
Coulomb energy, the ratio N/A is itself a function of A 
and, therefore, TQ will be A -dependent. We are in a 
position to predict this A dependence since we have in 
Eq. (47) an analytic expression which accurately 
(except for very low A) approximates N/Z as a function 
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FIG, 5. The points present xo (nuclear radius) and the lower 
points, xoe (radius of equivalent uniform density model), as a 
function of A113. Equations of the "fit" lines are given in text. 

of A. We find24 (in F) 
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24 Equation (32) of I reads R=-l.QQr^Al^-{-\.6lrD which when 
evaluated using present values of fo«> and m becomes R 
= 1.20A1IS+0MF. 

FIG. 6. The variation of xQ as a function of iV1/3, N 
being the neutron number. 

CONCLUSION 

A credible zero-order nuclear model is given by 
treating attractive but velocity-dependent two-body 
interactions in Thomas-Fermi approximation. Such a 
model reproduces the gross energetics and sizes given 
by experiment for reasonable values of a small number 
of input parameters. The model predicts a small but 
definite Johnson-Teller effect: The neutron distribution 
extends out beyond the proton distribution. It also 
predicts a definite depression of the central proton 
density for medium and heavy nuclei. The treatment 
of the extremities of the neutron and proton distri
butions in this model is certainly not accurate. There 
is no way that this model can deal directly with a 
possible clustering effect far out in the nuclear surface. 
The sharp edge of the nucleus predicted by a Thomas-
Fermi model with finite-range forces is certainly 
unrealistic, but we see no evidence that it is fatal to the 
model or responsible for the prediction of a spurious 
Johnson-Teller effect. 
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